Proteomics analysis identifies molecular targets related to diabetes mellitus-associated bladder dysfunction.

نویسندگان

  • Elizabeth Yohannes
  • Jinsook Chang
  • George J Christ
  • Kelvin P Davies
  • Mark R Chance
چکیده

Protein expression profiles in rat bladder smooth muscle were compared between animal models of streptozotocin-induced diabetes mellitus (STZ-DM) and age-matched controls at 1 week and 2 months after induction of hyperglycemia with STZ treatment. At each time point, protein samples from four STZ-DM and four age-matched control rat bladder tissues were prepared independently and analyzed together across multiple DIGE gels using a pooled internal standard sample to quantify expression changes with statistical confidence. A total of 100 spots were determined to be significantly changing among the four experimental groups. A subsequent mass spectrometry analysis of the 100 spots identified a total of 56 unique proteins. Of the proteins identified by two-dimensional DIGE/MS, 10 exhibited significant changes 1 week after STZ-induced hyperglycemia, whereas the rest showed differential expression after 2 months. A network analysis of these proteins using MetaCore suggested induction of transcriptional factors that are too low to be detected by two-dimensional DIGE and identified an enriched cluster of down-regulated proteins that are involved in cell adhesion, cell shape control, and motility, including vinculin, intermediate filaments, Ppp2r1a, and extracellular matrix proteins. The proteins that were up-regulated include proteins involved in muscle contraction (e.g. Mrlcb and Ly-GDI), in glycolysis (e.g. alpha-enolase and Taldo1), in mRNA processing (e.g. heterogeneous nuclear ribonucleoprotein A2/B1), in inflammatory response (e.g. S100A9, Annexin 1, and apoA-I), and in chromosome segregation and migration (e.g. Tuba1 and Vil2). Our results suggest that the development of diabetes-related complications in this model involves the down-regulation of structural and extracellular matrix proteins in smooth muscle that are essential for normal muscle contraction and relaxation but also induces proteins that are associated with cell proliferation and inflammation that may account for some of the functional deficits known to occur in diabetic complications of bladder.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proteomics Analysis Identifies Molecular Targets Related to Diabetes Mellitus-associated Bladder Dysfunction*□S

Protein expression profiles in rat bladder smooth muscle were compared between animal models of streptozotocin-induced diabetes mellitus (STZ-DM) and age-matched controls at 1 week and 2 months after induction of hyperglycemia with STZ treatment. At each time point, protein samples from four STZ-DM and four age-matched control rat bladder tissues were prepared independently and analyzed togethe...

متن کامل

Molecular Fingerprint of High Fat Diet Induced Urinary Bladder Metabolic Dysfunction in a Rat Model

AIMS/HYPOTHESIS Diabetic voiding dysfunction has been reported in epidemiological dimension of individuals with diabetes mellitus. Animal models might provide new insights into the molecular mechanisms of this dysfunction to facilitate early diagnosis and to identify new drug targets for therapeutic interventions. METHODS Thirty male Sprague-Dawley rats received either chow or high-fat diet f...

متن کامل

Inhibition of TNF-α Improves the Bladder Dysfunction That Is Associated With Type 2 Diabetes

Diabetic bladder dysfunction (DBD) is common and affects 80% of diabetic patients. However, the molecular mechanisms underlying DBD remain elusive because of a lack of appropriate animal models. We demonstrate DBD in a mouse model that harbors hepatic-specific insulin receptor substrate 1 and 2 deletions (double knockout [DKO]), which develops type 2 diabetes. Bladders of DKO animals exhibited ...

متن کامل

Inhibition of TNF-a Improves the Bladder Dysfunction That Is Associated With Type 2 Diabetes

Diabetic bladder dysfunction (DBD) is common and affects 80% of diabetic patients. However, the molecular mechanisms underlying DBD remain elusive because of a lack of appropriate animal models. We demonstrate DBD in a mouse model that harbors hepatic-specific insulin receptor substrate 1 and 2 deletions (double knockout [DKO]), which develops type 2 diabetes. Bladders of DKO animals exhibited ...

متن کامل

Metabolomics and Cell Therapy in Diabetes Mellitus

Diabetes with a broad spectrum of complications has become a global epidemic metabolic disorder. Till now, several pharmaceutical and non-pharmaceutical therapeutic approaches were applied for its treatment. Cell-based therapies have become promising methods for diabetes treatment. Better understanding of diabetes pathogenesis and identification of its specific biomarkers along with evaluation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular & cellular proteomics : MCP

دوره 7 7  شماره 

صفحات  -

تاریخ انتشار 2008